સંકર સંખ્યા $z$ ની એવી કેટલી કિમતો મળે કે જેથી $\left| z \right| + z - 3\bar z = 0$ થાય?
$0$
$1$
$2$
$3$
જો ${z_1}$ અને ${z_2}$ બે સંકર સંખ્યા હોય ,તો $|{z_1} + {z_2}{|^2}$ $ + |{z_1} - {z_2}{|^2}$ =...
બે સંકર સંખ્યા ${z_1},{z_2}$ માટે, $|{z_1} + {z_2}{|^2} = $ $|{z_1}{|^2} + |{z_2}{|^2}$ તો
જો $z$ એ એક સંકર સંખ્યા છે કે જેથી $| z | = 4$ અને $arg \,(z) = \frac {5\pi }{6}$ થાય તો $z$ ની કિમત મેળવો
જો $z$ એ સંકર સંખ્યા હોય, તો $|z| + |z - 1|$ ની ન્યૂનતમ કિમત મેળવો.
જો $\mathrm{z}_1$ અને $\mathrm{z}_2$ બે સંકર સંખ્યા માટે $\mathrm{z}_1+\mathrm{z}_2=5$ અને $z_1^3+z_2^3=20+15 i$ છે. તો $\left|z_1^4+z_2^4\right|=$__________.