$(p\; \wedge \sim q) \wedge (\sim p \vee q)$ is
A contradiction
A tautology
Either $(a)$ or $(b)$
Neither $(a)$ nor $(b)$
The negation of the expression $q \vee((\sim q) \wedge p)$ is equivalent to
Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.
The proposition $p \rightarrow \sim( p \wedge \sim q )$ is equivalent to
$(\sim (\sim p)) \wedge q$ is equal to .........
The logically equivalent preposition of $p \Leftrightarrow q$ is