$(p\; \wedge \sim q) \wedge (\sim p \vee q)$ is

  • A

    A contradiction

  • B

    A tautology

  • C

    Either $(a)$ or $(b)$

  • D

    Neither $(a)$ nor $(b)$

Similar Questions

The negation of the expression $q \vee((\sim q) \wedge p)$ is equivalent to

  • [JEE MAIN 2023]

Consider

Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.

Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow   \sim  p )$  is a tautology.

  • [AIEEE 2009]

The proposition $p \rightarrow \sim( p \wedge \sim q )$ is equivalent to

  • [JEE MAIN 2020]

$(\sim (\sim p)) \wedge q$ is equal to .........

The logically equivalent preposition of $p \Leftrightarrow q$ is

  • [AIEEE 2012]