Multiply $x^{2}+4 y^{2}+z^{2}+2 x y+x z-2 y z$ by $(-z+x-2 y)$
We have,
$(-z+x-2 y)\left(x^{2}+4 y^{2}+z^{2}+2 x y+x z-2 y z\right)$
$=\left\{(x+(-2 y)+(-z)\}\left\{(x)^{2}+(-2 y)^{2}+(-z)^{2}-(x)(-2 y)-(-2 y)(-z)-(-z)(x)\right\}\right.$
$=x^{3}+(-2 y)^{3}+(-z)^{3}-3(x)(-2 y)(-z)$
$\quad\left[\because(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=a^{3}+b^{3}+c^{3}-3 a b c\right]$
$=x^{3}-8 y^{3}-z^{3}-6 x y z$
Verify whether $3$ and $5$ are zeros of the polynomial $x^{2}-x-6$ or not.
Factorise the following:
$8 p^{3}+\frac{12}{5} p^{2}+\frac{6}{25} p+\frac{1}{125}$
Is $(x-1)$ is a factor of $3 x^{2}+7 x-10 ?$
Write the degree of each of the following polynomials
$x^{8}-6561$
Write the degree of each of the following polynomials
$a x^{3}+b x^{2}+c x+d$