Factorise the following:
$8 p^{3}+\frac{12}{5} p^{2}+\frac{6}{25} p+\frac{1}{125}$
$8 p^{3}+\frac{12}{5} p^{2}+\frac{6}{25} p+\frac{1}{125}$
$=(2 p)^{3}+3 \times(2 p)^{2} \times \frac{1}{5}+3 \times(2 p)+\left(\frac{1}{5}\right)^{2}+\left(\frac{1}{5}\right)^{3}$
$=(2 p)^{3}+\left(\frac{1}{5}\right)^{3}+3 \times(2 p) \times \frac{1}{5}\left[2 p+\frac{1}{5}\right]$
Now, using $a^{3}+b^{3}+3 a b(a+b)=(a+b)^{3}$
$=\left(2 p+\frac{1}{5}\right)^{3}=\left(2 p+\frac{1}{5}\right)\left(2 p+\frac{1}{5}\right)\left(2 p+\frac{1}{5}\right)$
Factorise the following:
$25 x^{2}+16 y^{2}+4 z^{2}-40 x y+16 y z-20 x z$
Without actually calculating the cubes, find the value of each of the following
$(21)^{3}+(15)^{3}+(-36)^{3}$
On dividing $p(x)=2 x^{3}-3 x^{2}+a x-3 a+9$ by $(x+1),$ if the remainder is $16,$ then find the value of $a$. Then, find the remainder on dividing $p(x)$ by $x+2$
Write the coefficient of $x^{2}$ in the following polynomials
$7 x^{3}-11 x+24$
The coefficient of $x$ in the expansion of $(x+3)^{3}$ is