Modulus of $\left( {\frac{{3 + 2i}}{{3 - 2i}}} \right)$ is
$1$
$1/2$
$2$
$\sqrt 2 $
The amplitude of $0$ is
If $|z_1|=1, \, |z_2| =2, \,|z_3|=3$ and $|9z_1z_2 + 4z_1z_3+z_2z_3| =12$ then the value of $|z_1+z_2+z_3|$ is equal to :-
Find the modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$
Argument and modulus of $\frac{{1 + i}}{{1 - i}}$ are respectively
The set of all $\alpha \in R$, for which $w = \frac{{1 + \left( {1 - 8\alpha } \right)z}}{{1 - z}}$ is a purely imaginary number, for all $z \in C$ satisfying $\left| z \right| = 1$ and ${\mathop{\rm Re}\nolimits} \,z \ne 1$, is