જો $100$ અવલોકનનો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $40$ અને $10$ છે આ અવલોકનોમાં બે અવલોકનો $3$ અને $27$ ને બદલે $30$ અને $70$ લેવાય ગયું તો સાચું પ્રમાણિત વિચલન મેળવો
Given, $n=100, \bar{x}=40$ and $\sigma=10$
$\therefore \quad \frac{\Sigma x_{i}}{n}=40$
$\Rightarrow \quad \frac{\Sigma x_{i}}{100}=40$
$\Rightarrow \quad \Sigma x_{i}=4000$
Now, Corrected $\Sigma x_{i}=4000-30-70+3+27=3930$
Corrected mean $=\frac{2930}{100}=39.3$
Now, $\sigma^{2}=\frac{\Sigma x_{i}^{2}}{n}-\left(\frac{\Sigma x_{i}}{n}\right)^{2}=\frac{\Sigma x_{i}^{2}}{n}-(40)^{2}$
$\Rightarrow \quad 100=\frac{\Sigma x_{i}^{2}}{100}-1600$
$\Rightarrow \quad \Sigma x_{i}^{2}=170000$
Now, $\quad$ Corrected $\Sigma x_{i}^{2}=170000-(30)^{2}-(70)^{2}+3^{2}+(27)^{2}=164938$
Corrected $\sigma=\sqrt{\frac{164938}{100}-(39.3)^{2}}=\sqrt{1649.38-1544.49}=\sqrt{104.9}$
$=10.24$
$2n$ અવલોકનનો વાળી શ્રેણીમાં તે પૈકી અડધા અવલોકનો $a$ બરાબર અને બાકીના $-a $ છે. જો અવલોકનોનું પ્રમાણિત વિચલન $2$ હોય તો $| a | $ બરાબર શું થાય ?
નીચે આપેલ માહિતી માટે વિચરણ શોધો.
$6,8,10,12,14,16,18,20,22,24$
વિતરણનો મધ્યક $4$ છે. જો તેના વિચરણનો ચલનાંક $58\% $ હોયતો વિતરણનું પ્રમાણિત વિચલન કેટલું થાય છે ?
જે $10$ પ્રાકૃતિક સંખ્યાઓ $1, 1, 1,...., 1,k$ નું વિચરણ $10$ કરતા ઓછું હોય, તો $k$ની શક્ય મહત્તમ કિંમત ...... છે.
નીચે આપેલ માહિતીનું વિચરણ શોધો.
વસ્તુ નું કદ |
$3.5$ |
$4.5$ |
$5.5$ |
$6.5$ |
$7.5$ |
$8.5$ |
$9.5$ |
આવ્રુતિ |
$3$ |
$ 7$ |
$22$ |
$60$ |
$85$ |
$32$ |
$8$ |