Match each of the set on the left described in the roster form with the same set on the right described in the set-builder form:

$(i)$  $\{ P,R,I,N,C,A,L\} $ $(a)$  $\{ x:x$ is a positive integer and is adivisor of $18\} $
$(ii)$  $\{ \,0\,\} $ $(b)$  $\{ x:x$ is an integer and ${x^2} - 9 = 0\} $
$(iii)$  $\{ 1,2,3,6,9,18\} $ $(c)$  $\{ x:x$ is an integer and $x + 1 = 1\} $
$(iv)$  $\{ 3, - 3\} $ $(d)$  $\{ x:x$ is aletter of the word $PRINCIPAL\} $

 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Since in $(d),$ there are $9$ letters in the word $PRINCIPAL$ and two letters $P$ and $I$ are repeated, so

$(i)$ matches $(d).$ Similarly, $(ii)$ matches $(c)$ as $x+1=1$ implies $x=0 .$ Also, $1,2,3,6,9,18$ are all divisors of $18$ and so $(iii)$ matches $(a).$ Finally, $x^{2}-9=0$ implies $x=3,-3$ and so $(iv)$ matches $(b).$

Similar Questions

If $Q = \left\{ {x:x = {1 \over y},\,{\rm{where \,\,}}y \in N} \right\}$, then

Which of the following are sets ? Justify your answer.

A team of eleven best-cricket batsmen of the world.

Which of the following sets are finite or infinite.

The set of prime numbers less than $99$

Write the following intervals in set-builder form :

$\left[ {6,12} \right]$

Set $A$ has $m$ elements and Set $B$ has $n$ elements. If the total number of subsets of $A$ is $112$ more than the total number of subsets of $B$, then the value of $m \times n$ is

  • [JEE MAIN 2020]