Write the following sets in the set-builder form :

$\{ 1,4,9 \ldots 100\} $

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\{1,4,9 \ldots 100\}$

It can be seen that $1=1^{2}, 4=2^{2}, 9=3^{2} \ldots 100=10^{2}$

$\therefore \{ 1,4,9 \ldots 100\}  = \{ x:x = {n^2},n \in N{\rm{ }}$ and $1\, \le \,n\, \le \,10\} $

Similar Questions

Let $A, B$ and $C$ be three sets. If $A \in B$ and $B \subset C$, is it true that $A$ $\subset$ $C$ ?. If not, give an example.

Let $A, B,$ and $C$ be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$. Show that $B = C$

Let $A=\{1,2,3,4,5,6\} .$ Insert the appropriate symbol $\in$ or $\notin$ in the blank spaces:

$10 \, .........\, A $

Write the following as intervals :

$\{ x:x \in R,0\, \le \,x\, < \,7\} $

State which of the following sets are finite or infinite :

$\{ x:x \in N$ and ${x^2} = 4\} $