Let $A, B,$ and $C$ be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$. Show that $B = C$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let, $A, B$ and $C$ be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$.

To show: $B = C$

Let $x \in B$

$\Rightarrow x \in A \cup B \quad[B \subset A \cup B]$

$\Rightarrow x \in A \cup C \quad[A \cup B=A \cup C]$

$\Rightarrow x \in A$ or $x \in C$

Case $I$

Also, $x \in B$

$\therefore x \in A \cap B$

$\Rightarrow x \in A \cap C \quad[\because A \cap B=A \cap C]$

$\therefore x \in A$ and $x \in C$

$\therefore x \in C$

$\therefore B \subset C$

Similarly, we can show that $C \subset B$

$\therefore B=C$

Similar Questions

In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If $x \in A$ and $A \in B,$ then $x \in B$

The number of non-empty subsets of the set $\{1, 2, 3, 4\}$ is

From the sets given below, select equal sets:

$A=\{2,4,8,12\}, B=\{1,2,3,4\}, C=\{4,8,12,14\}, D=\{3,1,4,2\}$

$E=\{-1,1\}, F=\{0, a\}, G=\{1,-1\}, H=\{0,1\}$

Let $A=\{a, e, i, o, u\}$ and $B=\{a, i, u\} .$ Show that $A \cup B=A$

Which set is the subset of all given sets