જો $A=\left\{(x, y) \in R \times R \mid 2 x^{2}+2 y^{2}-2 x-2 y=1\right\}$ ; $B=\left\{(x, y) \in R \times R \mid 4 x^{2}+4 y^{2}-16 y+7=0\right\}$ અને $C=\left\{(x, y) \in R \times R \mid x^{2}+y^{2}-4 x-2 y+5 \leq r^{2}\right\}$ હોય તો $|r|$ ની ન્યૂનતમ કિમંત મેળવો કે જેથી $A \cup B \subseteq C$ થાય.
$\frac{3+\sqrt{10}}{2}$
$1+\sqrt{5}$
$\frac{2+\sqrt{10}}{2}$
$\frac{3+2 \sqrt{5}}{2}$
વર્તૂળ $x^2 + y^2 = 1 $ સાથે સંકળાયેલ અને અંદરથી સ્પર્શતા $(4, 3)$ કેન્દ્રવાળા વર્તૂળનું સમીકરણ....
વર્તૂળો ${x^2} + {y^2} = 4$ અને ${x^2} + {y^2} - 6x - 8y = 24$ ના સામાન્ય સ્પર્શકોની સંખ્યા મેળવો.
$r$ ત્રિજ્યાવાળા ત્રણ વર્તૂળો એકબીજાને સ્પર્શેં છે. આપેલ ત્રણેય વર્તૂળોને અંદરતી સ્પર્શતા વર્તૂળની ત્રિજ્યા :
વર્તૂળો ${x^2} + {y^2} - 4x - 6y - 12 = 0$ અને${x^2} + {y^2} + 6x + 18y + 26 = 0$ ના સામાન્ય સ્પર્શકોની સંખ્યા મેળવો.
કયા બિંદુમાંથી વર્તૂળો $x^{2} + y^{2} - 8x + 40 = 0, 5x^{2} + 5y^{2} - 25 x + 80 = 0 $ અને $x^{2} + y^{2} - 8x + 16y + 160 = 0 $ પર દોરેલા સ્પર્શકોની લંબાઈ સમાન રહે?