Let

$A=\left\{(x, y) \in R \times R \mid 2 x^{2}+2 y^{2}-2 x-2 y=1\right\}$

$B=\left\{(x, y) \in R \times R \mid 4 x^{2}+4 y^{2}-16 y+7=0\right\} \text { and }$

$C=\left\{(x, y) \in R \times R \mid x^{2}+y^{2}-4 x-2 y+5 \leq r^{2}\right\}$

Then the minimum value of $|r|$ such that $A \cup B \subseteq C$ is equal to:

  • [JEE MAIN 2021]
  • A

    $\frac{3+\sqrt{10}}{2}$

  • B

    $1+\sqrt{5}$

  • C

    $\frac{2+\sqrt{10}}{2}$

  • D

    $\frac{3+2 \sqrt{5}}{2}$

Similar Questions

The two circles ${x^2} + {y^2} - 2x - 3 = 0$ and ${x^2} + {y^2} - 4x - 6y - 8 = 0$ are such that

If the circles ${x^2} + {y^2} + 2x + 2ky + 6 = 0$ and ${x^2} + {y^2} + 2ky + k = 0$ intersect orthogonally, then $k$ is

  • [IIT 2000]

The points of intersection of circles ${x^2} + {y^2} = 2ax$ and ${x^2} + {y^2} = 2by$ are

The number of common tangents to the circles ${x^2} + {y^2} - x = 0,\,{x^2} + {y^2} + x = 0$ is

For the two circles $x^2 + y^2 = 16$ and $x^2 + y^2 -2y = 0,$ there is/are

  • [JEE MAIN 2014]