ધારો કે $\mathrm{A}(1,-1)$ અને $\mathrm{B}(0,2)$ આપેલ છે . જો બિંદુ $\mathrm{P}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)$ એવિ રીતે આપેલ છે કે જેથી ક્ષેત્રફળ $\Delta \mathrm{PAB}=5\; \mathrm{sq}$ એકમ થાય અને જે રેખા $3 x+y-4 \lambda=0$ પર આવેલ હોય તો $\lambda$ મેળવો.
$1$
$4$
$3$
$-3$
રેખાઓ $ax \pm by \pm c = 0$ થી બનતા સ.બા.ચનું ક્ષેત્રફળ મેળવો.
રેખા $2x + 3y = 12$ એ $x -$ અક્ષને બિંદુ $A$ અને $y -$ અક્ષને બિંદુ $B$ આગળ મળે છે રેખા બિંદુ $(5, 5)$ માંથી પસાર થતી અને $AB$ ને લંબ કે જે $x -$ અક્ષ,$y -$ અક્ષને $\&$ રેખા $AB$ ને અનુક્રમે બિંદુઓ $C, D, E$ માં મળે છે જો $O$ એ ઊંગમબિંદુ હોય તો $OCEB$ નું ક્ષેત્રફળ મેળવો
સમદ્રીબાજુ ત્રિકોણ $ABC$ માં $\angle C = \angle A$ છે જો આંતરિક ખૂણા $\angle A$ અને $\angle C$ વચ્ચેનો દ્રીભાજક એ બાજુ $AC$ ના મધ્યગાને $3 : 1$ માં છેદે છે (બિંદુ $B$ થી બાજુ $AC$ par ),તો $cosec \ \frac{B}{2}$ ની કિમત મેળવો
ધારો કે કોઈ ત્રિકોણ એ નીચે પ્રમાણેની રેખાઓ દ્વારા બંધાયેલો છે. $L _{1}: 2 x+5 y=10 L _{2}:-4 x+3 y=12$ અને રેખા $L _{3}$ કે જે બિંદુ $P (2,3)$ માંથી પસાર થાય છે તથા $L _{2}$ ને $A$ આગળ અને $L _{1}$ ને $B$ આગળ છેદે છે. જે બિંદુ $P$ એ રેખાખંડ $AB$ નુ $1 : 3$ ગુણોત્તરમાં અંત:વિભાજન કરે, તો આ ત્રિકોણનું ક્ષેત્રફળ........છે.
Let $A \equiv (3, 2)$ અને $B \equiv (5, 1)$ છે $ABP$ એ એક સમબાજુ ત્રિકોણ છે કે જેની એક બાજુ $AB$ ઊંગમબિંદુ થી હોય તો ત્રિકોણ $ABP$ નું લંબકેન્દ્ર મેળવો