माना मूल बिन्दु से वृत्त $x^{2}+y^{2}-8 x-4 y+16=0$ पर खींची गई स्पर्श रेखायें इसे बिन्दुओं $A$ तथा $B$ पर स्पर्श करती है। तो $( AB )^{2}$ बराबर है
$\frac{52}{5}$
$\frac{32}{5}$
$\frac{56}{5}$
$\frac{64}{5}$
माना वृत्त $x ^2+ y ^2-4 x +3=0$ के दो बिंदुओं $A$ तथा $B$ पर स्पर्श रेखाएँ $O (0,0)$ पर मिलती हैं। तब त्रिभुज $OAB$ का क्षेत्रफल है
सरल रेखा $x\cos \alpha + y\sin \alpha = p$, वृत्त ${x^2} + {y^2} = {a^2}$ को स्पर्श करती है, यदि
यदि $a > 2b > 0$ तब $m$ का धनात्मक मान जिसके लिए $y = mx - b\sqrt {1 + {m^2}} $, वृत्तों ${x^2} + {y^2} = {b^2}$ तथा ${(x - a)^2} + {y^2} = {b^2}$ की उभयनिष्ठ स्पर्श रेखा है
वृत्त ${x^2} + {y^2} - 4x - 2y - 11 = 0$ पर बिन्दु $(4, 5)$ से स्पर्श रेखायें खींची जाती हैं तो इन स्पर्श रेखाओं व त्रिज्याओ से बने चतुभ्र्ज का क्षेत्रफल ............ वर्ग इकाई है
माना $\mathrm{O}$ मूलबिन्दु है तथा $\mathrm{OP}$ और $\mathrm{OQ}$ वृत्त $x^2+y^2-6 x+4 y+8=0$ के बिन्दुओं $P$ तथा $Q$ पर स्पर्श रेखाएं हैं। यदि त्रिभुज $\mathrm{OPQ}$ का परिवृत्त, बिन्दु $\left(\alpha, \frac{1}{2}\right)$ से होकर जाती है, तो $\alpha$ का एक मान है