Let the tangents drawn from the origin to the circle, $x^{2}+y^{2}-8 x-4 y+16=0$ touch it at the points $A$ and $B .$ The $(A B)^{2}$ is equal to

  • [JEE MAIN 2020]
  • A

    $\frac{52}{5}$

  • B

    $\frac{32}{5}$

  • C

    $\frac{56}{5}$

  • D

    $\frac{64}{5}$

Similar Questions

The equation of the normal to the circle ${x^2} + {y^2} - 2x = 0$ parallel to the line $x + 2y = 3$ is

The area of the triangle formed by the positive $x$-axis and the normal and the tangent to the circle $x^2 + y^2 = 4$ at $(1, \sqrt 3 )$ is

The tangent and the normal lines at the point $(\sqrt 3,1)$ to the circle $x^2 + y^2 = 4$ and the $x -$ axis form a triangle. The area of this triangle (in square units) is

  • [JEE MAIN 2019]

If the lengths of the chords intercepted by the circle ${x^2} + {y^2} + 2gx + 2fy = 0$ from the co-ordinate axes be $10$ and $24$ respectively, then the radius of the circle is..

The equations of the tangents to the circle ${x^2} + {y^2} = {a^2}$ parallel to the line $\sqrt 3 x + y + 3 = 0$ are