The normal at the point $(3, 4)$ on a circle cuts the circle at the point $(-1, -2)$. Then the equation of the circle is

  • A

    ${x^2} + {y^2} + 2x - 2y - 13 = 0$

  • B

    ${x^2} + {y^2} - 2x - 2y - 11 = 0$

  • C

    ${x^2} + {y^2} - 2x + 2y + 12 = 0$

  • D

    ${x^2} + {y^2} - 2x - 2y + 14 = 0$

Similar Questions

The equations of the tangents to circle $5{x^2} + 5{y^2} = 1$, parallel to line $3x + 4y = 1$ are

The angle between the tangents from $(\alpha ,\beta )$to the circle ${x^2} + {y^2} = {a^2}$, is

Circles $x^2 + y^2 + 4x + d = 0, x^2 + y^2 + 4fy + d = 0$ touch each other, if

An infinite number of tangents can be drawn from $(1, 2)$ to the circle ${x^2} + {y^2} - 2x - 4y + \lambda = 0$, then $\lambda = $

If the length of the tangents drawn from the point $(1,2)$ to the circles ${x^2} + {y^2} + x + y - 4 = 0$ and $3{x^2} + 3{y^2} - x - y + k = 0$ be in the ratio $4 : 3$, then $k =$