ધારો કે વર્તુળ $C _{1}: x^{2}+y^{2}=2$ ના બિંદુ $M (-1,1)$ આગળનો સ્પર્શક એ વર્તુળ $C _{2}:(x-3)^{2}+(y-2)^{2}=5$ ને બે ભિન્ન બિંદુઓ $A$ અને $B$ માં છેદ્દે છે. ને $C_{2}$ ના બિંદુઓ $A$ અને $B$ આગળના સ્પર્શકો $N$ માં છેદે, તો ત્રિકોણ $ANB$ નું ક્ષેત્રફળ$=\dots\dots$
$\frac{1}{2}$
$\frac{2}{3}$
$\frac{1}{6}$
$\frac{5}{3}$
ઉગમબિંદુમાંથી વર્તૂળ $ (x - 7)^2 + (y + 1)^2 = 25$ દોરેલા સ્પર્શકો વચ્ચેનો ખૂણો ....
રેખા $x = y$ એ વર્તુળ પરના બિંદુ $(1, 1)$ આગળ સ્પર્શે છે જો વર્તુળ બિંદુ $(1, -3)$ માંથી પસાર થતું હોય તો વર્તુળની ત્રિજ્યા મેળવો.
વર્તૂળ ${x^2} + {y^2} - 2x - 4y - 20 = 0$ ને બહારના બિંદુ $(5, 5)$ એ સ્પર્શતા તથા જેની ત્રિજયા $5$ એકમ હોય તેવા વર્તૂળનુંં સમીકરણ મેળવો.
રેખાઓ $12x - 5y - 17 = 0$ અને $24x - 10y + 44 = 0$ સમાન વર્તૂળના સ્પર્શકો તો વર્તૂળની ત્રિજ્યા :
બિંદુ$\left( {\frac{1}{{\sqrt 2 }},\,\frac{1}{{\sqrt 2 }}} \right)$ માંથી વર્તૂળ $x^2 + y^2 = 9$ ના અભિલબનું સમીકરણ....