જો બિંદુ $(p, q)$ માંથી વર્તૂળ $x^{2} + y^{2} = px + qy$ (જ્યાં $pq \neq 0$) પર દોરેલી બે ભિન્ન જીવાઓ $x-$અક્ષ દ્વારા દુભાગે છે તો ....
$p^{2} = q^{2}$
$p^{2}= 8q^{2}$
$p^{2} < 8q^{2}$
$p^{2} > 8q^{2}$
બે વર્તુળો કે જેની ત્રિજ્યા $5\,$ એકમ છે તેઓ એકબીજા ને બિંદુ $(1,2)$ આગળ સ્પર્શે છે. જો તેઓના સામાન્ય સ્પર્શકનું સમીકરણ $4 \mathrm{x}+3 \mathrm{y}=10$ છે અને $\mathrm{C}_{1}(\alpha, \beta)$ અને $\mathrm{C}_{2}(\gamma, \delta)$, $\mathrm{C}_{1} \neq \mathrm{C}_{2}$ એ તેઓના કેન્દ્રો છે તો $|(\alpha+\beta)(\gamma+\delta)|$ ની કિંમત મેળવો.
બિંદુ $P(0, h)$ થી વર્તુળ $x^2 + y^2 = 16$ સાથે બનાવેલ સ્પર્શક $x-$ અક્ષને બિંદુ $A$ અને $B$ માં છેદે છે જો $\Delta APB$ નું ક્ષેત્રફળ ન્યૂનતમ થાય તો $h$ ની કિમત મેળવો
રેખા $ax + by + c = 0$ એ વર્તૂળ $x^2 + y^2 = r^2$ નો અભિલંબ છે. વર્તૂળ દ્વારા $ax + by + c = 0$ રેખા પર અંત:ખંડનાં ભાગની લંબાઈ :
વર્તૂળ ${x^2} + {y^2} - 2x - 4y - 20 = 0$ ને બહારના બિંદુ $(5, 5)$ એ સ્પર્શતા તથા જેની ત્રિજયા $5$ એકમ હોય તેવા વર્તૂળનુંં સમીકરણ મેળવો.