$\left| {\,\begin{array}{*{20}{c}}{a - 1}&a&{bc}\\{b - 1}&b&{ca}\\{c - 1}&c&{ab}\end{array}\,} \right| = $

  • A

    $0$

  • B

    $(a - b)(b - c)(c - a)$

  • C

    ${a^3} + {b^3} + {c^3} - 3abc$

  • D

    इनमें से कोई नहीं

Similar Questions

यदि समीकरणों के निकाय $x + y + z = 6$, $x + 2y + 3z = 10,$ $x + 2y + \lambda z = \mu $ का कोई हल नहीं है, तब

यदि $\left| {\begin{array}{*{20}{c}}{x - 4}&{2x}&{2x}\\{2x}&{x - 4}&{2x}\\{2x}&{2x}&{x - 4}\end{array}} \right| = \left( {A + Bx} \right){\left( {x - A} \right)^2},$ तो क्रमित युग्म $(A, B)$ बराबर है

  • [JEE MAIN 2018]

समीकरण $\left|\begin{array}{ccc}x & -6 & -1 \\ 2 & -3 x & x-3 \\ -3 & 2 x & x+2\end{array}\right|=0$, के वास्तविक मूलों का योगफल है

  • [JEE MAIN 2019]

$\left| {\,\begin{array}{*{20}{c}}{{1^2}}&{{2^2}}&{{3^2}}\\{{2^2}}&{{3^2}}&{{4^2}}\\{{3^2}}&{{4^2}}&{{5^2}}\end{array}\,} \right|$=          

सारणिक $\left| {\,\begin{array}{*{20}{c}}1&a&{b + c}\\1&b&{c + a}\\1&c&{a + b}\end{array}\,} \right|$ का मान है