Let the system of equations $x+2 y+3 z=5$, $2 x+3 y+z=9,4 x+3 y+\lambda z=\mu$ have infinite number of solutions. Then $\lambda+2 \mu$ is equal to :
$28$
$17$
$22$
$15$
Consider the system of equations
$ x-2 y+3 z=-1 $ ; $ -x+y-2 z=k $ ; $ x-3 y+4 z=1$
$STATEMENT -1$ : The system of equations has no solution for $\mathrm{k} \neq 3$. and
$STATEMENT - 2$ : The determinant $\left|\begin{array}{ccc}1 & 3 & -1 \\ -1 & -2 & \mathrm{k} \\ 1 & 4 & 1\end{array}\right| \neq 0$, for $\mathrm{k} \neq 3$.
Let $a ,b ,c $ be such that $b + c \ne 0$ if
$\left| {\begin{array}{*{20}{c}}a&{a + 1}&{a - 1}\\{ - b}&{b + 1}&{b - 1}\\c&{c - 1}&{c + 1}\end{array}} \right| + \left| {\begin{array}{*{20}{c}}{a + 1}&{b + 1}&{c - 1}\\{a - 1}&{b - 1}&{c + 1}\\{{{\left( { - 1} \right)}^{n + 2}} \cdot a}&{{{\left( { - 1} \right)}^{n + 1}} \cdot b}&{{{\left( { - 1} \right)}^n} \cdot c}\end{array}} \right| = 0$ then $n$ equals to
The system of equations $\lambda x + y + z = 0,$ $ - x + \lambda y + z = 0,$ $ - x - y + \lambda z = 0$, will have a non zero solution if real values of $\lambda $ are given by
Evaluate the determinants : $\left|\begin{array}{ll}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$
If the system of linear equations
$2 x+y-z=3$
$x-y-z=\alpha$
$3 x+3 y+\beta z=3$
has infinitely many solution, then $\alpha+\beta-\alpha \beta$ is equal to .... .