અહી દ્રીપદી $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ ના વિસ્તરણમાં $\frac{1}{\sqrt[4]{3}}$ ની વધતી ઘાતાંક માં શરૂઆત થી પાંચમું પદ અને અંતથી પાંચમું પદનો ગુણોતર $\sqrt[4]{6}: 1$ છે. જો શરૂઆતથી છઠ્ઠુ પદ $\frac{\alpha}{\sqrt[4]{3}}$ હોય તો $\alpha$ ની કિમંત મેળવો.
$84$
$83$
$82$
$86$
${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ ના વિસ્તરણમાં અચળપદ મેળવો.
${(1 + x)^{20}}$ ના વિસ્તરણમાં ${r^{th}}$ અને ${(r + 4)^{th}}$ પદોના સહગુણક સમાન હોય તો . . . .
જો $\left(\sqrt{\frac{1}{x^{1+\log _{10} x}}}+x^{\frac{1}{12}}\right)^{6}$ ના વિસ્તરણમાં ચોથું પદ $200$ અને $x > 1$ હોય તો $x$ ની કિમત મેળવો.
જો $\left( a x^3+\frac{1}{ b x^{1 / 3}}\right)^{15}$ ના વિસ્તારમાં $x^{15}$ નો સહગુણક એ $\left( a x^{1 / 3}-\frac{1}{ b x^3}\right)^{15}$ ના વિસ્તરણ માં $x^{-15}$ ના સહગુણક જેટલો થાય,જ્યાં $a$ અને $b$ ધન વાસ્તવિક સંખ્યાઓ છે,તો આવી પ્રત્યેક ક્રમયુક્ત જોડ $(a,b)$ માટે $..........$.
${(1 + x)^{2n}}$ ના વિસ્તરણમાં મધ્યમપદ મેળવો.