माना $\frac{1}{\sqrt[4]{3}}$ की बढ़ती घातों में $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^n$ के द्विपद प्रसार में आरंभ से पाँचवें पद का अन्त से पाँचवें पद से अनुपात $\sqrt[4]{6}: 1$ है। यदि आरंभ से छठा पद $\frac{\alpha}{\sqrt[4]{3}}$ है, तो $\alpha$ बराबर है $...........$
$84$
$83$
$82$
$86$
प्राकृत संख्या $m$, जिसके लिए $\left( x ^{ m }+\frac{1}{ x ^{2}}\right)^{22}$ के द्विपद प्रसार में $x$ का गुणांक $1540$ है
यदि $(1+x)^n$ के प्रकार में तीन क्रमागत पदों के गुणांकों का अनुपात $1: 5: 20$ है, तो चौथे पद का गुणांक है
यदि $\left(\sqrt{\frac{1}{x^{1+\log _{10} x}}}+x^{\frac{1}{12}}\right)^{6}$ के द्विपद प्रसार का चौथा पद $200$ है तथा $x>1$ है, तो $x$ का मान है
सिद्ध कीजिए कि $\sum\limits_{r = 0}^n {{3^r}{\,^n}{C_r} = {4^n}} $
माना $(1+\mathrm{x})^{\mathrm{n}}$ के प्रसार में चार क्रमागत पदों के गुणांक $2-p, p, 2-\alpha, \alpha$ हैं। तो $p^2-\alpha^2+6 \alpha+2 p$ का मान बराबर है