ધારોકે આપેલ વક્રના બધાજ બિંદુએ દોરેલ અભિલંબો એક નિશ્ચિત બિંદુ $(a, b)$ માંથી પસાર થાય છે. જે વક્ર $(3,-3)$ અને $(4,-2 \sqrt{2}),$ માંથી પસાર થાય અને $a-2 \sqrt{2} b=3,$ આપેલ હોય, તો $\left(a^{2}+b^{2}+a b\right)=....... .$
$6$
$3$
$4$
$9$
ધારોકે $5$ ત્રિજ્યાવાળું એક વર્તુળ, $x$-અક્ષની નીચે આવેલું છ. રેખા $L_{1}: 4 x+3 y+2=0$ એ વર્તુળ $C$ ના કેન્દ્ $P$ માંથી પસાર થાય છે અને રેખા $L_{2}: 3 x-4 y-11=0$ ને છદે છે. રેખા $L_{2}$ એ $C$ ને $Q$ આગળ સ્પર્શ છે. તો $P$ નું રેખા $5 x-12 y+51=0$ થી અંતર $\dots\dots\dots$છે.
બિંદુ $ (0, 1) $ માંથી વર્તૂળ $ x^2 + y^2 - 2x + 4y = 0 $ પર દોરેલા સ્પર્શકોના સમીકરણ....
વર્તૂળ ${x^2} + {y^2} - 2x - 4y - 20 = 0$ ને બહારના બિંદુ $(5, 5)$ એ સ્પર્શતા તથા જેની ત્રિજયા $5$ એકમ હોય તેવા વર્તૂળનુંં સમીકરણ મેળવો.
બિંદુ $(2, -3)$ માંથી વર્તૂળ $x^2 + y^2 + 4x - 6y - 12 = 0$ પર દોરેલા સ્પર્શકોની સ્પર્શ જીવાનું સમીકરણ શોધો.
વર્તૂળો $x^2 + y^2 + 4x + d = 0, x^2 + y^2 + 4fy + d = 0$ એકબીજાને ક્યારે સ્પર્શેં ?