ધારોકે $8$ સંખ્યાઓ $x, y, 10,12,6,12,4,8$ ના મધ્યક અને વિયરણ અનુક્રમે $9$ અને $9.25$ છે. જો $x > y$ હોય, તો $3 x-2 y=.........$.
$24$
$25$
$23$
$22$
જો $5$ અવલોકનો $x_1 ,x_2 ,x_3 ,x_4 ,x_5$ નો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $10$ અને $3$ હોય તો $6$ અવલોકનો $x_1 ,x_2 ,.....,x_5$ અને $-50$ નો વિચરણ ......... થાય
$2n$ અવલોકનની એક શ્રેણી આપેલ છે,તે પૈકી $n$ અવલોકન $a$ છે અને બાકીના અવલોકન $-a$ છે.જો પ્રમાણિત વિચલન $2$ હોય તો $|a| =$
વિધાન $- 1$ : પ્રથમ $n$ યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ $\frac{{{n^2}\, - \,\,1}}{3}$છે.
વિધાન $- 2$ : પ્રથમ $n$ અયુગ્મ પ્રાકૃતિક સંખ્યાઓનો સરવાળો $n^2$ છે અને પ્રથમ $n$ અયુગ્મ પ્રાકૃતિક સંખ્યાઓના વર્ગનો સરવાળો $\frac{{n(4{n^2}\, + \,\,1)}}{3}$છે.
જો વિતરણનું દરેક અવલોકન જેનું વિચરણ $\sigma^2$ એ $\lambda$ વડે ગુણીત હોય તો નવા અવલોકનોનું પ્રમાણિત વિચલન શોધો.
જો $\mathop \sum \limits_{i = 1}^9 \left( {{x_i} - 5} \right) = 9$ અને $\mathop \sum \limits_{i = 1}^9 {\left( {{x_i} - 5} \right)^2} = 45,$ તો અવલોકનો ${x_1},{x_2},\;.\;.\;.\;,{x_9}$ નું પ્રમાણિત વિચલન . . . . છે.