Let the line $y=m x$ and the ellipse $2 x^{2}+y^{2}=1$ intersect at a ponit $\mathrm{P}$ in the first quadrant. If the normal to this ellipse at $P$ meets the co-ordinate axes at $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ and $(0, \beta),$ then $\beta$ is equal to

  • [JEE MAIN 2020]
  • A

    $\frac{2}{\sqrt{3}}$

  • B

    $\frac{2 \sqrt{2}}{3}$

  • C

    $\frac{2 }{3}$

  • D

    $\frac{\sqrt{2}}{3}$

Similar Questions

The locus of the mid point of the line segment joining the point $(4,3)$ and the points on the ellipse $x^{2}+2 y^{2}=4$ is an ellipse with eccentricity

  • [JEE MAIN 2022]

The radius of the circle having its centre at $(0, 3)$ and passing through the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$, is

  • [IIT 1995]

Let $PQ$ be a focal chord of the parabola $y^{2}=4 x$ such that it subtends an angle of $\frac{\pi}{2}$ at the point $(3, 0)$. Let the line segment $PQ$ be also a focal chord of the ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$. If $e$ is the eccentricity of the ellipse $E$, then the value of $\frac{1}{e^{2}}$ is equal to

  • [JEE MAIN 2022]

Find the equation for the ellipse that satisfies the given conditions: Major axis on the $x-$ axis and passes through the points $(4,\,3)$ and $(6,\,2)$

Let the ellipse $E : x ^2+9 y ^2=9$ intersect the positive $x$ - and $y$-axes at the points $A$ and $B$ respectively Let the major axis of $E$ be a diameter of the circle $C$. Let the line passing through $A$ and $B$ meet the circle $C$ at the point $P$. If the area of the triangle which vertices $A, P$ and the origin $O$ is $\frac{m}{n}$, where $m$ and $n$ are coprime, then $m - n$ is equal to

  • [JEE MAIN 2023]