The radius of the circle having its centre at $(0, 3)$ and passing through the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$, is

  • [IIT 1995]
  • A

    $3$

  • B

    $3.5$

  • C

    $4$

  • D

    $\sqrt {12} $

Similar Questions

The eccentricity of an ellipse is $2/3$, latus rectum is $5$ and centre is $(0, 0)$. The equation of the ellipse is

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $4 x ^{2}+9 y ^{2}=36$

If $x = 9$ is the chord of contact of the hyperbola ${x^2} - {y^2} = 9$, then the equation of the corresponding pair of tangents is

  • [IIT 1999]

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{16}+\frac {y^2} {9}=1$.

The locus of the point of intersection of the perpendicular tangents to the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ is