ધારો કે વર્તુળ $x^{2}+y^{2}+a x+2 a y+c=0$ $,(a < 0)$ એ $x-$ અક્ષ તથા $y-$અક્ષ સાથે અનુક્રમે $2 \sqrt{2}$ તથા $2 \sqrt{5}$ જેટલો અંતઃખંડ બનાવે છે. તો ઊગમબિંદુ થી રેખા $x +2 y =0$ ને લંબ હોય એવા આ વર્તુળનાં સ્પર્શકનું લઘુત્તમ અંતર ...... છે.

  • [JEE MAIN 2021]
  • A

    $\sqrt{11}$

  • B

    $\sqrt{7}$

  • C

    $\sqrt{6}$

  • D

    $\sqrt{10}$

Similar Questions

રેખા $ax + by + c = 0$ એ વર્તૂળ $x^2 + y^2 = r^2$ નો અભિલંબ છે. વર્તૂળ દ્વારા $ax + by + c = 0$ રેખા પર અંત:ખંડનાં ભાગની લંબાઈ :

$p$ ના કયા શક્ય મૂલ્ય માટે રેખા $x\ cos\ \alpha + y\ sin\ \alpha = p$ એ વર્તૂળે $x^2 + y^2 - 2qx\ cos\alpha - 2qy\ sin\ \alpha = 0$ નો સ્પર્શક હોય ?

વર્તૂળ $ x^2 + y^2 = r^2$  દ્વારા રેખા  $\frac{x}{a}\,\, + \;\,\frac{y}{b}\,\, = \,\,1$ પરના આંતર છેદથી બનતી જીવાની લંબાઈ....

જો બિંદુ $(p, q)$ માંથી વર્તૂળ $x^{2} + y^{2} = px + qy$ (જ્યાં $pq \neq  0$) પર દોરેલી બે ભિન્ન જીવાઓ $x-$અક્ષ દ્વારા દુભાગે છે તો ....

$(6, -5) $ માંથી વર્તૂળ $ x^2 + y^2 - 2x + 4y + 3 = 0 $ પર દોરેલા સ્પર્શકોની જોડનું સમીકરણ....