જેનું પ્રથમ પદ $n ^{2}$ અને સામાન્ય ગુણોત્તર $\frac{1}{( n +1)^{2}}$ હોય તેવી અનંત સમગુણોતર શ્રેણીનો સરવાળો ધારો કે $S _{ n }$ છે, જ્યાં $n =1,2, \ldots \ldots, 50$ તો, $\frac{1}{26}+\sum_{ n =1}^{50}\left( S _{ n }+\frac{2}{ n +1}- n -1\right)$ ની કીમત................છે

  • [JEE MAIN 2022]
  • A

    $41600$

  • B

    $47651$

  • C

    $41651$

  • D

    $41671$

Similar Questions

સમગુણોત્તર શ્રેણીમાં આપેલી ત્રણ સંખ્યાઓનો સરવાળો $38$ અને ગુણાકાર $1728$ છે, તો તેમાંની સૌથી મોટી સંખ્યા....... છે.

જો $x, 2x + 2$ અને $3x + 3$ સમગુણોત્તર શ્રેણીમાં હોય, તો તેનું ચોથું પદ કયું હોય ?

જો ${a_n}$ એ ધન સંખ્યાઓની સમગુણોતર શ્રેણીનું  ${n^{th}}$ પદ છે . જો $\sum\limits_{n = 1}^{100} {{a_{2n}}} = \alpha $ અને $\sum\limits_{n = 1}^{100} {{a_{2n - 1}}} = \beta $, આપેલ છે કે જેથી  $\alpha \ne \beta $, તો સામાન્ય ગુણોતર મેળવો.

  • [IIT 1992]

સમગુણોત્તર શ્રેણીનાં ત્રણ પદનો સરવાળો $19$ અને ગુણાકાર $216$ હોય, તો આ શ્રેણીનો સામાન્ય ગુણોત્તર...... છે.

એક માણસને $2$ માતા-પિતા, $4$ દાદા-દાદી, $8$ વડદાદા-વડદાદી વગેરે છે તો તેની $10$ મી પેઢીએ રહેલ પૂર્વજોની સંખ્યા શોધો.