જો ${a_n}$ એ ધન સંખ્યાઓની સમગુણોતર શ્રેણીનું ${n^{th}}$ પદ છે . જો $\sum\limits_{n = 1}^{100} {{a_{2n}}} = \alpha $ અને $\sum\limits_{n = 1}^{100} {{a_{2n - 1}}} = \beta $, આપેલ છે કે જેથી $\alpha \ne \beta $, તો સામાન્ય ગુણોતર મેળવો.
$\frac{\alpha }{\beta }$
$\frac{\beta }{\alpha }$
$\sqrt {\frac{\alpha }{\beta }} $
$\sqrt {\frac{\beta }{\alpha }} $
એક ધન પદોની વધતી સમગુણોત્તર શ્રેણીમાં, બીજા અને છઠ્ઠા પદનો સરવાળો $\frac{70}{3}$ છે તથા ત્રીજા અને પાંચમાં પદનો ગુણાકાર $49$ છે. તો ચોથા, છઠ્ઠા અને આઠમાં પદોનો સરવાળો .......... છે.
એક સમગુણોત્તર શ્રેણીનું ત્રીજું પદ $24$ અને છઠું પદ $192$ છે તો તેનું $10$ મું પદ શોધો.
$0.1232323 ......$ નું અપૂર્ણાક મૂલ્ય મેળવો.
જો $\sum\limits_{{\text{r}}\, = \,{\text{1}}}^\infty {\frac{1}{{{{(2r\, - \,1)}^2}}}\,\, = \,\,\frac{{{\pi ^2}}}{8}} $ હોય, તો $\,\sum\limits_{{\text{r}}\, = \,{\text{1}}}^\infty {\frac{1}{{{r^2}}}\,\, = \,\,.........} $
જો ${\text{r}}\,\, > \,\,{\text{1}}$ અને ${\text{x}}\, = \,\,{\text{a}}\, + \,\frac{a}{r}\, + \,\frac{a}{{{r^2}}}\, + \,..\,\,\infty ,\,\,y\, = \,b\, - \,\frac{b}{r}\, + \,\frac{b}{{{r^2}}} - \,..\,\,\,\infty $ અને ${\text{z}}\,\, = \,\,{\text{c}}\, + \,\frac{{\text{c}}}{{{{\text{r}}^{\text{2}}}}}\, + \,\frac{c}{{{r^4}}}\, + \,\,\,\infty ,\,$ હોય, તો $\frac{{{\text{xy}}}}{{\text{z}}}\,\, = \,...$