यदि किसी दीर्घवृत्त की उत्केन्द्रता $\frac{1}{{\sqrt 2 }}$ हो, तो उसका नाभिलम्ब होगा
लघु अक्ष
अर्ध लघु अक्ष
दीर्घ अक्ष
अर्ध दीर्घ अक्ष
उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ $( \pm 2,\;0)$ तथा उत्केन्द्रता $\frac{1}{2}$है, होगा
उस दीर्घवृत्त का समीकरण जिसका केन्द्र मूलबिन्दु है तथा जो बिन्दुओं $(-3, 1)$ तथा $(2, -2)$ से गुजरता है, है
$c$ के उन मानों की संख्या, जिनके लिये सरल रेखा $y = 4x + c$ वक्र $\frac{{{x^2}}}{4} + {y^2} = 1$ को स्पर्श करती है, है
उस दीर्घवृत्त, जिसके अक्ष निर्देशांक अक्ष है, जो बिन्दु $(-3,1)$ से होकर जाता है तथा जिसकी उत्केन्द्रता $\sqrt{\frac{2}{5}}$ है, का समीकरण है:
एक दीर्घवृत्त बिन्दु $(-3, 1)$ से गुजरता है तथा उसकी उत्केन्द्रता $\sqrt {\frac{2}{5}} $ है। दीर्घवृत्त का समीकरण होगा