मानाकि वृत्त $C$ सरल रेखा $L _1: 4 x -3 y + K _1=0$ तथा $L _2: 4 x -3 y + K _2=0, K _1, K _2 \in R$ को स्पर्श करता टै। यदि एक सरल रेखा वृत्त $C$ के केन्द्र से गुजरती है $L _1$ को $(-1,2)$ तथा $L _2$ को $(3,-6)$ पर प्रतिच्छेद करती है तो वृत्त $C$ का समीकऱण होगा
$(x-1)^{2}+(y-2)^{2}=4$
$(x+1)^{2}+(y-2)^{2}=4$
$(x-1)^{2}+(y+2)^{2}=16$
$(x-1)^{2}+(y-2)^{2}=16$
वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$ पर बिन्दु $({x_1},{y_1})$ से खींची गयी स्पर्श रेखा की लम्बाई है
यदि रेखा $lx + my + n = 0$ वृत्त ${(x - h)^2} + {(y - k)^2} = {a^2}$ की स्पर्श रेखा हो, तो
माना $C$ एक वृत्त है जिसका केंद्र $(1,1)$ पर है तथा त्रिज्या $=1$ है। यदि $T$ केंद्र $(0, y)$ वाला वृत्त है जो मूल बिंदु से हो कर जाता है तथा वृत्त $C$ को बाह्य रूप से स्पर्श करता है, तो $T$ की त्रिज्या बराबर है:
यदि तीन वृत्तों ${x^2} + {y^2} - 2{\lambda _i}\,x = {c^2},(i = 1,\,2,\,3)$ के केन्द्रों की मूलबिन्दु से दूरियाँ गुणोत्तर श्रेणी में हों, तब वृत्त ${x^2} + {y^2} = {c^2}$ पर किसी बिन्दु से उन पर खींची गयीं स्पर्श रेखाओं की लम्बाइयाँ होंगी
यदि किसी वृत्त का केन्द्र $(2, 3)$ एवं एक स्पर्श रेखा $x + y = 1$ है, तो इस वृत्त का समीकरण है