$f(x)$ અને $g(x)$ એ બે વિધેય માટે $f\left( x \right) = \frac{{2\sin \pi x}}{x}$ અને $g\left( x \right) = f\left( {1 - x} \right) + f\left( x \right)$ છે. જો $g\left( x \right) = kf(\frac{x}{2})f\left( {\frac{{1 - x}}{2}} \right)$ હોય તો $k$ ની કિમત ........... થાય.

  • A

    $\frac{1}{2}$

  • B

    $\frac{1}{4}$

  • C

    $\frac{1}{6}$

  • D

    $\frac{1}{8}$

Similar Questions

વિધેય $f(x) = \frac{x}{{1 + \left| x \right|}},\,x \in R,$ નો વિસ્તાર મેળવો. 

  • [AIEEE 2012]

જો $x > 2$ માટે $f(x) = \frac{1}{{\sqrt {x + 2\sqrt {2x - 4} } }} + \frac{1}{{\sqrt {x - 2\sqrt {2x - 4} } }}$ ,તો $f(11) = $

વક્ર $f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1, x \in R$,એ $x-$અક્ષને જ્યાં છેદે તે બિંદુઓની સંખ્યા $.........$ છે. 

  • [JEE MAIN 2023]

ધારોકે $A =\{1,2,3,4,5\}$ અને $B =\{1,2,3,4,5,6\}$. તો $f(1)+f(2)=f(4)-1$ નું સમાધાન કરતા વિધેયો $f: A \rightarrow B$ ની સંખ્યા $=.........$

  • [JEE MAIN 2023]

જો $f(x)$ માટે નો સબંધ $f\left( {\frac{{5x - 3y}}{2}} \right) = \frac{{5f(x) - 3f(y)}}{2}\forall x,y\, \in \,R$ અને $f(0)=1, f'(0)=2$ હોય તો $sin(f(x))$ નો આવર્તમાન મેળવો.