જો $f(x)$ માટે નો સબંધ $f\left( {\frac{{5x - 3y}}{2}} \right) = \frac{{5f(x) - 3f(y)}}{2}\forall x,y\, \in \,R$ અને $f(0)=1, f'(0)=2$ હોય તો $sin(f(x))$ નો આવર્તમાન મેળવો.
$2\pi $
$\pi $
$3\pi $
$4\pi $
આપેલ પૈકી . . . . યુગ્મ વિધેય છે.
$f(x) = \frac{1}{{\sqrt {{{\log }_{\frac{\pi }{4}}}({{\sin }^{ - 1}}x) - 1} }}$ નો પ્રદેશગણ મેળવો.
ધારો કે વિધેય :$f:\left[0, \frac{\pi}{2}\right]$ $ \rightarrow$ $R$, $f(x)=\sin x$ અને $g:\left[0, \frac{\pi}{2}\right] $ $\rightarrow$ $R$, $g(x)=\cos x$ દ્વારા આપેલ છે. સાબિત કરો કે $f$ અને $g$ એક-એક છે, પરંતુ $f+ g$ એક-એક નથી.
વિધેય $\mathrm{f}(\mathrm{x})=\log _{\sqrt{5}}(3+\cos \left(\frac{3 \pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}-\mathrm{x}\right)$
$-\cos \left(\frac{3 \pi}{4}-\mathrm{x}\right))$ નો વિસ્તાર મેળવો.
જો $\phi (x) = {a^x}$, તો ${\{ \phi (p)\} ^3} = . . .$