અહી $[\lambda]$ એ મહતમ પૃણાંક વિધેય છે. $\lambda$ ની કિમંતો નો ગણ મેળવો કે જેથી સમીકરણ સંહતિ $x+y+z=4,3 x+2 y+5 z=3$ $9 x+4 y+(28+[\lambda]) z=[\lambda]$ નો ઉકેલ મળે.
${R}$
$(-\infty,-9) \cup(-9, \infty)$
$[-9,-8)$
$(-\infty,-9) \cup[-8, \infty)$
જો $a, b, c$ એ શૂન્યતર વાસ્તવિક સંખ્યાઓ છે અને જો સમીકરણો $(a - 1 )x = y + z,$ $(b - 1 )y = z + x ,$ $(c - 1 )z= x + y,$ ને શૂન્યતર ઉકેલ હોય તો $ab + bc + ca$ ની કિમત મેળવો.
જો સુરેખ સમીકરણ સંહતી $2 x+3 y-z=-2$ ; $x+y+z=4$ ; $x-y+|\lambda| z=4 \lambda-4$ (જ્યાં $\lambda \in R$ ) ને ઉંકેલ ન હોય, તો..........
જો $k > 0$ માટે બિંદુઓ $(2k, k), (k, 2k)$ અને $(k, k)$ દ્વારા રચાતા ત્રિકોણનું ક્ષેત્રફળ $18$ એકમ હોય તો ત્રિકોણનું મધ્યકેન્દ્ર મેળવો.
$\lambda$ અને $\mu$ ની કિમંત મેળવો કે જેથી સમીકરણ સંહતિ $x+y+z=6,3 x+5 y+5 z=26, x+2 y+\lambda z=\mu$ નો ઉકેલગણ ખાલીગણ થાય.
ધારો કે $\omega $ એક એવી સંકર સંખ્યા છે કે જેથી $2\omega + 1 = z$ જયાં $z = \sqrt { - 3} $ . જો $\left| {\begin{array}{*{20}{c}}1&1&1\\1&{ - {\omega ^2} - 1}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^7}}\end{array}} \right| = 3k$ હોય,તો $k$ મેળવો. .