Let $f(x) = (x-4)(x-5)(x-6)(x-7)$ then -

  • A

    $f'(x) = 0$ has four roots

  • B

    Three roots of $f'(x) = 0$ lie in $(4, 5)  \cup  (5, 6)  \cup  (6, 7)$

  • C

    The equation $f'(x) = 0$ has only one root

  • D

    Three roots of $f'(x) = 0$ lie in $(3, 4)  \cup  (4, 5)  \cup  (5, 6)$

Similar Questions

If $L.M.V.$ theorem is true for $f(x) = x(x-1)(x-2);\, x \in [0,\, 1/2]$ , then $C =$ ?

If function $f(x) = x(x + 3) e^{-x/2} ;$ satisfies the rolle's theorem in the interval $[-3, 0],$ then find $C$

Let $f(x) = \left\{ {\begin{array}{*{20}{c}}
  {{x^2}\ln x,\,x > 0} \\ 
  {0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0} 
\end{array}} \right\}$, Rolle’s theorem is applicable to $ f $ for $x \in [0,1]$, if $\alpha = $

  • [IIT 2004]

A value of $c$ for which conclusion of Mean Value Theorem holds for the function $f\left( x \right) = \log x$ on the interval $[1,3]$ is

  • [AIEEE 2007]

If $f(x)$ = $sin^2x + xsin2x.logx$, then $f(x)$ = $0$ has