A value of $c$ for which conclusion of Mean Value Theorem holds for the function $f\left( x \right) = \log x$ on the interval $[1,3]$ is
$2{\log _3}e$
$\frac{1}{2}{\log _e}3$
$\;{\log _3}e$
${\log _e}3$
Let $\psi_1:[0, \infty) \rightarrow R , \psi_2:[0, \infty) \rightarrow R , f:[0, \infty) \rightarrow R$ and $g :[0, \infty) \rightarrow R$ be functions such that
$f(0)=g(0)=0$
$\Psi_1( x )= e ^{- x }+ x , \quad x \geq 0$
$\Psi_2( x )= x ^2-2 x -2 e ^{- x }+2, x \geq 0$
$f( x )=\int_{- x }^{ x }\left(| t |- t ^2\right) e ^{- t ^2} dt , x >0$
and
$g(x)=\int_0^{x^2} \sqrt{t} e^{-t} d t, x>0$
($1$) Which of the following statements is $TRUE$ ?
$(A)$ $f(\sqrt{\ln 3})+ g (\sqrt{\ln 3})=\frac{1}{3}$
$(B)$ For every $x>1$, there exists an $\alpha \in(1, x)$ such that $\psi_1(x)=1+\alpha x$
$(C)$ For every $x>0$, there exists a $\beta \in(0, x)$ such that $\psi_2(x)=2 x\left(\psi_1(\beta)-1\right)$
$(D)$ $f$ is an increasing function on the interval $\left[0, \frac{3}{2}\right]$
($2$) Which of the following statements is $TRUE$ ?
$(A)$ $\psi_1$ (x) $\leq 1$, for all $x>0$
$(B)$ $\psi_2(x) \leq 0$, for all $x>0$
$(C)$ $f( x ) \geq 1- e ^{- x ^2}-\frac{2}{3} x ^3+\frac{2}{5} x ^5$, for all $x \in\left(0, \frac{1}{2}\right)$
$(D)$ $g(x) \leq \frac{2}{3} x^3-\frac{2}{5} x^5+\frac{1}{7} x^7$, for all $x \in\left(0, \frac{1}{2}\right)$
Rolle's theorem is true for the function $f(x) = {x^2} - 4 $ in the interval
If the Rolle's theorem holds for the function $f(x) = 2x^3 + ax^2 + bx$ in the interval $[-1, 1 ]$ for the point $c = \frac{1}{2}$ , then the value of $2a + b$ is
Consider a quadratic equation $ax^2 + bx + c = 0,$ where $2a + 3b + 6c = 0$ and let $g(x) = a\frac{{{x^3}}}{3} + b\frac{{{x^2}}}{2} + cx.$
Statement $1:$ The quadratic equation has at least one root in the interval $(0, 1).$
Statement $2:$ The Rolle's theorem is applicable to function $g(x)$ on the interval $[0, 1 ].$
The number of points, where the curve $y=x^5-20 x^3+50 x+2$ crosses the $x$-axis, is $............$.