If $f(x)$ = $sin^2x + xsin2x.logx$, then $f(x)$ = $0$ has

  • A

    exactly one root in $\left( {0,2\pi } \right]$

  • B

    atleast two roots in $\left( {0,2\pi } \right]$

  • C

    atmost one root in $\left( {0,2\pi } \right]$

  • D

    no root in $\left( {0,2\pi } \right]$

Similar Questions

If Rolle's theorem holds for the function $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ with $f ^{\prime}\left(\frac{4}{3}\right)=0,$ then ordered pair $( a , b )$ is equal to

  • [JEE MAIN 2021]

Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ be a thrice differentiable function such that $f(0)=0, f(1)=1, f(2)=-1, f(3)=2$ and $f(4)=-2$. Then, the minimum number of zeros of $\left(3 f^{\prime} f^{\prime \prime}+f f^{\prime \prime \prime}\right)(x)$ is....................

  • [JEE MAIN 2024]

Mean value theorem $f(b) -f(a) = (b -a) f '(x_1);$ from $a < x_1 < b,$ if $f(x) = 1/x$ then $x_1 = ?$

Let $f(x) = (x-4)(x-5)(x-6)(x-7)$ then -

From mean value theorem $f(b) - f(a) = $ $(b - a)f'({x_1});$   $a < {x_1} < b$ if $f(x) = {1 \over x}$, then ${x_1} = $