Let $\rho (r) =\frac{Q}{{\pi {R^4}}}r$ be the charge density distribution for a solid sphere of radius $R$ and total charge $Q$. For a point '$p$' inside the sphere at distance $r_1$ from the centre of the sphere, the magnitude of electric field is
$0$
$\frac{Q}{{4\pi {\varepsilon _0}{r_1}^2}}$
$\;\frac{Q}{{4\pi {\varepsilon _0}{R^4}}}$
$\;\frac{{Q{r_1}^2}}{{3\pi {\varepsilon _0}{R^4}}}$
A spherical conductor of radius $12 \;cm$ has a charge of $1.6 \times 10^{-7} \;C$ distributed uniformly on its surface. What is the electric field
$(a)$ inside the sphere
$(b)$ just outside the sphere
$(c)$ at a point $18\; cm$ from the centre of the sphere?
Obtain the expression of electric field at any point by continuous distribution of charge on a $(i)$ line $(ii)$ surface $(iii)$ volume.
Consider the force $F$ on a charge $'q'$ due to a uniformly charged spherical shell of radius $R$ carrying charge $Q$ distributed uniformly over it. Which one of the following statements is true for $F,$ if $'q'$ is placed at distance $r$ from the centre of the shell $?$
Let a total charge $2Q$ be distributed in a sphere of radius $R$, with the charge density given by $\rho(r) = kr$, where $r$ is the distance from the centre. Two charges $A$ and $B$, of $-Q$ each, are placed on diametrically opposite points, at equal distance, $a$, from the centre. If $A$ and $B$ do not experience any force, then
The volume charge density of a sphere of radius $6 \,m$ is $2 \,\mu cm ^{-3}$. The number of lines of force per unit surface area coming out from the surface of the sphere is $....\times 10^{10}\, NC ^{-1}$. [Given : Permittivity of vacuum $\left.\epsilon_{0}=8.85 \times 10^{-12} C ^{2} N ^{-1}- m ^{-2}\right]$