The number of continuous functions $f:[0,1] \rightarrow R$ that satisfy $\int \limits_0^1 x f(x) d x=\frac{1}{3}+\frac{1}{4} \int \limits_0^1(f(x))^2 d x$ is
Let $f$ be a positive function. Let
${I_1} = \int_{1 - k}^k {x\,f\left\{ {x(1 - x)} \right\}} \,dx$, ${I_2} = \int_{1 - k}^k {\,f\left\{ {x(1 - x)} \right\}} \,dx$
when $2k - 1 > 0.$ Then ${I_1}/{I_2}$ is
If ${I_1} = \int_0^1 {{2^{{x^2}}}dx,\;} {I_2} = \int_0^1 {{2^{{x^3}}}dx} ,\;{I_3} = \int_1^2 {{2^{{x^2}}}dx} $,${I_4} = \int_1^2 {{2^{{x^3}}}dx} $, then
The true solution set of the inequality,$\sqrt{5x-6-x^2}+\left( \frac{\pi }{2}\int\limits_{0}^{x}{dz} \right)>x\int\limits_{0}^{\pi }{{{\sin }^{2}}xdx}$ is:
Let $f: R \rightarrow R$ be a function defined as $f(x)=a \sin \left(\frac{\pi[x]}{2}\right)+[2-x], a \in R$, where [t] is the greatest integer less than or equal to $t$. If $\lim _{x \rightarrow-1} f(x)$ exists, then the value of $\int_{0}^{4} f(x) d x$ is equal to.