Let for $x \in R , S_0( x )= x$,$S _{ k }( x )= C _{ k } x + k \int _0^{ x } S _{ k -1}(t) d t$, where $C _0=1, C _{ k }=1-\int_0^1 S _{ k -1}( x ) dx , k =1,2,3 \ldots$. Then $S _2(3)+6 C _3$ is equal to $...........$.
$17$
$16$
$18$
$11$
The true solution set of the inequality,
$\sqrt {5\,x\,\, - \,\,6\,\, - \,\,{x^2}} \,\, + \,\,\frac{\pi }{2}\,\,\int\limits_0^x {} $$dz > x \int\limits_0^\pi {} sin^2 x \,dx$ is :
Which of the following statements is incorrect for the function $g(\alpha)$ for $\alpha \in R$ such that
$g(\alpha)=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin ^{\alpha} x}{\cos ^{\alpha} x+\sin ^{\alpha} x} d x$
A quadratic polynomial $P(x)$ satisfies the conditions, $P(0) = P(1) = 0\, \&\,\int\limits_0^1 {} P(x) dx = 1$. The leading coefficient of the quadratic polynomial is :
The numbers $P, Q$ and $R$ for which the function $f(x) = P{e^{2x}} + Q{e^x} + Rx$ satisfies the conditions $f(0) = - 1,$ $f'(\log 2) = 31$ and $\int_0^{\log 4} {[f(x) - Rx]\,dx = \frac{{39}}{2}} $ are given by
Let $a, b, c$ be non-zero real numbers such that ; $\int\limits_0^1 {} (1 + cos^8x) (ax^2 + bx + c) dx$ $= \int\limits_0^2 {} (1 + cos^8x) (ax^2 + bx + c) dx$ , then the quadratic equation $ax^2 + bx + c = 0$ has :