माना $A$ तथा $B$ दो घटनायें इस प्रकार हैं कि $P\overline {(A \cup B)} = \frac{1}{6},P(A \cap B) = \frac{1}{4}$ व $P(\bar A) = \frac{1}{4},$ जहाँ $\bar A$, घटना $A$ की पूरक है तब $A$ तथा $B$ हैं
स्वतन्त्र लेकिन समसम्भावी नहीं
परस्पर अपवर्जी व स्वतंत्र
समसम्भावी एवं परस्पर अपवर्जी
समसम्भावी किन्तु स्वतंत्र नहीं
तीन घटनाओं $A$, $B$ तथा $C$ के लिए
$P(A$ अथवा $B$ में से केवल एक घटित हांती है $)$
$=P(B$ अथवा $C$ में से केवल एक घटित होती है $)$
$=P(C$ अथवा $A$ में से केबल एक घटित होती है
$=\frac{1}{4}$ तथा $P$ (सभी तीन घटनाएँ एक साथ घटित होती है)
$=\frac{1}{16}$ है,
तो प्रायिकता कि कम से कम एक घटना घटित हो, है:
$12$ टिकट जिन पर $1, 2, 3......12$ अंकित है। एक टिकट यदृच्छया निकाला जाता है तो संख्या को $2$ या $3$ का गुणज होने की प्रायिकता है
यदि $E$ व $F$ स्वतंत्र घटनायें इस प्रकार हैं कि $0 < P(E) < 1$ और $0 < P\,(F) < 1,$ तो
ताश के $52$ पत्तों की एक सुमिश्रित गड्डी से एक पत्ता यादृच्छया निकाला जाता है। निम्नलिखित में से किन दशाओं में घटनाएँ $E$ और $F$ स्वतंत्र हैं?
$E$ : 'निकाला गया पत्ता काले रंग का है'
$F :$ 'निकाला गया पत्ता एक बादशाह है'
यदि $A$ और $B$ स्वतंत्र घटनाएँ हैं तो $A$ या $B$ में से न्यूनतम एक के होने की प्रायिकता $=1- P \left( A ^{\prime}\right) P \left( B ^{\prime}\right)$