જો $y\,\, = \,\,mx\, + \,\,c$      એ ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1\,$ નો સ્પર્શક હોય , તો $c$ નું મૂલ્ય ......

  • A

    $0$

  • B

    $3/m$

  • C

    $ \pm \,\,\sqrt {9{m^2}\,\, + \;\,4} $

  • D

    $ \pm \,\,3\,\,\sqrt {1\,\, + \;\,{m^2}} $

Similar Questions

એક ઉપવલય પરનું બિંદુ $(4, -1)$ ને રેખા $x + 4y - 10 = 0$ સ્પર્શેં છે જો તેની અક્ષો યામાક્ષો સાથે સાંપતી હોય, તો તેનું સમીકરણ $(a > b)$

ઉપવલયના પ્રમાણિત સમીકરણ ($y-$અક્ષ પ્રત્યે) માં ગૌણ અક્ષની લંબાઈ  $\frac{4}{\sqrt{3}} $ છે. તો ઉપવલય રેખા $x+6 y=8 $ સ્પર્શે છે તો ઉકેન્દ્રીતા મેળવો.

  • [JEE MAIN 2020]

આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ  કેન્દ્ર ઊગમબિંદુ, પ્રધાન અક્ષ $y$-અક્ષ પર હોય અને બિંદુઓ $(3, 2)$ અને $(1, 6)$ માંથી પસાર થાય. 

જેનું કેન્દ્ર ઊગમબિંદુ આગળ છે એવા ઉપવલયની ઉત્કેન્દ્રતા $\frac{1}{2}$ છે. જો તેની એક નિયામીકા $x = - 4$ હોય,તો $\left( {1,\frac{3}{2}} \right)$ આગળ તેના અભિલંબનું સમીકરણ . . . છે. .

  • [JEE MAIN 2017]

${\text{P}}$ એ ઉપવલય $\frac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\,\, + \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,$ પરનું બિંદુ છે. જ્યારે $\Delta PSS'\,$ નું ક્ષેત્રફળ મહતમ હોય,ત્યારે  $\Delta PSS'$ ($S$ અને $S'$ નાભિઓ) ની અંત: ત્રિજ્યા =.........