If one vertex of an equilateral triangle of side $'a'$ lies at the origin and the other lies on the line $x - \sqrt{3} y = 0$ then the co-ordinates of the third vertex are :
If the point $\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$ lies on the curve traced by the mid-points of the line segments of the lines $x$ $\cos \theta+ y \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)$ between the coordinates axes, then $\alpha$ is equal to
The vertices of $\Delta PQR$ are $P (2,1), Q (-2,3)$ and $R (4,5) .$ Find equation of the median through the vertex $R$.
The base $BC$ of a triangle $ABC$ is bisected at the point $(p, q)$ and the equations to the sides $AB$ and $AC$ are respectively $px+qy= 1$ and $qx + py = 1.$ Then the equation to the median through $A$ is
Two sides of a rhombus are along the lines, $x -y+ 1 = 0$ and $7x-y-5 =0.$ If its diagonals intersect at $(-1,-2),$ then which one of the following is a vertex of this rhombus?