Let ${ }^n C_{r-1}=28,{ }^n C_r=56$ and ${ }^n C_{r+1}=70$. Let $A (4 \cos t, 4 \sin t ), B (2 \sin t ,-2 \cos t )$ and $C \left(3 r - n , r ^2- n -1\right)$ be the vertices of a triangle $A B C$, where $t$ is a parameter. If $(3 x-1)^2+(3 y)^2=\alpha$, is the locus of the centroid of triangle $ABC$ , then $\alpha$ equals :

  • [JEE MAIN 2025]
  • A
    $20$
  • B
    $8$
  • C
    $6$
  • D
    $18$

Similar Questions

If one vertex of an equilateral triangle of side $'a'$ lies at the origin and the other lies on the line $x - \sqrt{3} y = 0$ then the co-ordinates of the third vertex are :

If the point $\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$ lies on the curve traced by the mid-points of the line segments of the lines $x$ $\cos \theta+ y \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)$ between the coordinates axes, then $\alpha$ is equal to

  • [JEE MAIN 2023]

The vertices of $\Delta PQR$ are $P (2,1), Q (-2,3)$ and $R (4,5) .$ Find equation of the median through the vertex $R$.

The base $BC$ of a triangle $ABC$ is bisected at the point $(p, q)$ and the equations to the sides $AB$ and $AC$ are respectively $px+qy= 1$ and $qx + py = 1.$ Then the equation to the median through $A$ is

Two sides of a rhombus are along the lines, $x -y+ 1 = 0$ and $7x-y-5 =0.$ If its diagonals intersect at $(-1,-2),$ then which one of the following is a vertex of this rhombus?

  • [JEE MAIN 2016]