If one vertex of an equilateral triangle of side $'a'$ lies at the origin and the other lies on the line $x - \sqrt{3} y = 0$ then the co-ordinates of the third vertex are :
$(0, a)$
$\left( {\frac{{\sqrt 3 \,a}}{2}\,\,,\,\, - \,\frac{a}{2}} \right)$
$(0, - a)$
all of the above
Let the points of intersections of the lines $x-y+1=0$, $x-2 y+3=0$ and $2 x-5 y+11=0$ are the mid points of the sides of a triangle $A B C$. Then the area of the triangle $\mathrm{ABC}$ is .... .
In an isosceles triangle $ABC, \angle C = \angle A$ if point of intersection of bisectors of internal angles $\angle A$ and $\angle C$ divide median of side $AC$ in $3 : 1$ (from vertex $B$ to side $AC$), then value of $cosec \ \frac{B}{2}$ is equal to
If $A$ is $(2, 5)$, $B$ is $(4, -11)$ and $ C$ lies on $9x + 7y + 4 = 0$, then the locus of the centroid of the $\Delta ABC$ is a straight line parallel to the straight line is
Let $\mathrm{A}(-2,-1), \mathrm{B}(1,0), \mathrm{C}(\alpha, \beta)$ and $\mathrm{D}(\gamma, \delta)$ be the vertices of a parallelogram $A B C D$. If the point $C$ lies on $2 x-y=5$ and the point $D$ lies on $3 x-2 y=6$, then the value of $|\alpha+\beta+\gamma+\delta|$ is equal to_____.
A point moves such that its distance from the point $(4,\,0)$is half that of its distance from the line $x = 16$. The locus of this point is