If the point $\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$ lies on the curve traced by the mid-points of the line segments of the lines $x$ $\cos \theta+ y \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)$ between the coordinates axes, then $\alpha$ is equal to

  • [JEE MAIN 2023]
  • A

    $7$

  • B

    $-7$

  • C

    $-7 \sqrt{3}$

  • D

    $7 \sqrt{3}$

Similar Questions

The sides of a rhombus $ABCD$ are parallel to the lines, $x - y + 2\, = 0$ and $7x - y + 3\, = 0$. If the diagonals of the rhombus intersect at $P( 1, 2)$ and the vertex $A$ ( different from the origin) is on the $y$ axis, then the ordinate of $A$ is

  • [JEE MAIN 2018]

Two sides of a parallelogram are along the lines, $x + y = 3$ and $x -y + 3 = 0$. If its diagonals intersect at $(2, 4)$, then one of its vertex is

  • [JEE MAIN 2019]

Consider a triangle $\mathrm{ABC}$ having the vertices $\mathrm{A}(1,2), \mathrm{B}(\alpha, \beta)$ and $\mathrm{C}(\gamma, \delta)$ and angles $\angle \mathrm{ABC}=\frac{\pi}{6}$ and $\angle \mathrm{BAC}=\frac{2 \pi}{3}$. If the points $\mathrm{B}$ and $\mathrm{C}$ lie on the line $\mathrm{y}=\mathrm{x}+4$, then $\alpha^2+\gamma^2$ is equal to....................

  • [JEE MAIN 2024]

Locus of the points which are at equal distance from $3x + 4y - 11 = 0$ and $12x + 5y + 2 = 0$ and which is near the origin is

A pair of straight lines $x^2 - 8x + 12 = 0$ and $y^2 - 14y + 45 = 0$ are forming a square. Co-ordinates of the centre of the circle inscribed in the square are