અહી $a_1, a_2, a_3 \ldots$ એ ધન વધતી સમગુણોતર શ્રેણીમાં છે . જો $a_1 a_5=28$ અને $a_2+a_4=29$ તો  $a_6$ ની કિમંત મેળવો.

  • [JEE MAIN 2025]
  • A
    $628$
  • B
    $526$
  • C
    $784$
  • D
    $812$

Similar Questions

સમગુણોત્તર શ્રેણી $a + ar + ar^2 + ar^3 +..... \infty$ નો સરવાળો $7$ અને $r$ ની અયુગ્મ ઘાતવાળા પદોનો સરવાળો $'3'$, હોય તો $(a^2 -r^2)$ is કિમત મેળવો .

જો $a _{1}(>0), a _{2}, a _{3}, a _{4}, a _{5}$ સમગુણોતર શ્રેણીમાં હોય, $a _{2}+ a _{4}=2 a _{3}+1$ અને $3 a _{2}+ a _{3}=2 a _{4}$,હોય તો,$a _{2}+ a _{4}+2 a _{5}=\dots\dots\dots$ 

  • [JEE MAIN 2022]

શ્રેણીઓ $2,4,8,16,32$ અને $128,32,8,2, \frac{1}{2}$ નાં સંગત પદોના ગુણાકારનો સરવાળો શોધો.

$155$ ના એવા ત્રણ ભાગ પાડો કે જેથી ત્રણેય સંખ્યાઓ સમગુણોત્તર શ્રેણીમાં હોય અને પ્રથમ પદ એ તેના ત્રીજા પદ કરતાં $120$ ઓછું હોય.

જો ${x_r} = \cos (\pi /{3^r}) - i\sin (\pi /{3^r}),$ (જ્યાં $i = \sqrt{-1}),$ હોય તો $x_1.x_2.x_3......\infty ,$ ની કિમત મેળવો