The number which should be added to the numbers $2, 14, 62$ so that the resulting numbers may be in $G.P.$, is
The product $2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}} \cdot \ldots .$ to $\infty$ is equal to
The sum to infinity of the following series $2 + \frac{1}{2} + \frac{1}{3} + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{2^3}}} + \frac{1}{{{3^3}}} + ........$, will be
In a $G.P.,$ the $3^{rd}$ term is $24$ and the $6^{\text {th }}$ term is $192 .$ Find the $10^{\text {th }}$ term.
Let $x _{1}, x _{2}, x _{3}, \ldots ., x _{20}$ be in geometric progression with $x_{1}=3$ and the common ration $\frac{1}{2}$. A new data is constructed replacing each $x_{i}$ by $\left(x_{i}-i\right)^{2}$. If $\bar{x}$ is the mean of new data, then the greatest integer less than or equal to $\bar{x}$ is $.....$