Let $\alpha, \beta$ and $\gamma$ be real numbers. consider the following system of linear equations

$x+2 y+z=7$

$x+\alpha z=11$

$2 x-3 y+\beta z=\gamma$

Match each entry in List - $I$ to the correct entries in List-$II$

List - $I$ List - $II$
($P$) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma=28$, then the system has ($1$) a unique solution
($Q$) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma \neq 28$, then the system has ($2$) no solution

($R$) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma \neq 28$,

then the system has

($3$) infinitely many solutions
($S$) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma=28$, then the system has ($4$) $x=11, y=-2$ and $z=0$ as a solution
  ($5$) $x=-15, y=4$ and $z=0$ as a solution

Then the system has

  • [IIT 2023]
  • A

    $(\mathrm{P}) \rightarrow(3)(\mathrm{Q}) \rightarrow(2)(\mathrm{R}) \rightarrow(1)(\mathrm{S}) \rightarrow(4)$

  • B

    $(P) \rightarrow (3) (Q) \rightarrow (2) (R) \rightarrow (5) (S) \rightarrow (4)$

  • C

    $(P) \rightarrow (2) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (5)$

  • D

    $(\mathrm{P}) \rightarrow(2)(\mathrm{Q}) \rightarrow(1)(\mathrm{R}) \rightarrow(1)(\mathrm{S}) \rightarrow(3)$

Similar Questions

Let $x, y, z > 0$ are respectively $2^{nd}, 3^{rd}, 4^{th}$ term of $G.P.$ and $\Delta  = \left| {\begin{array}{*{20}{c}}
{{X^k}}&{{X^{k + 1}}}&{{X^{k + 2}}}\\
{{Y^k}}&{{Y^{k + 1}}}&{{Y^{k + 2}}}\\
{{Z^k}}&{{Z^{k + 1}}}&{{Z^{k + 2}}}
\end{array}} \right| = {\left( {r - 1} \right)^2}\left( {1 - \frac{1}{{{r^2}}}} \right)$ , (where $r$ is common ratio), then $k=$ .......

Let $N$ denote the number that turns up when a fair die is rolled. If the probability that the system of equations

$x+y+z=1$  ;  $2 x+N y+2 z=2$  ;  $3 x+3 y+N z=3$

has unique solution is $\frac{k}{6}$, then the sum of value of $k$ and all possible values of $N$ is

  • [JEE MAIN 2023]

Evaluate $\left|\begin{array}{cc}x & x+1 \\ x-1 & x\end{array}\right|$

If the system of linear equations : $x+y+2 z=6$, $2 x+3 y+a z=a+1$, $-x-3 y+b z=2 b$ where $a, b \in R$, has infinitely many solutions, then $7 a+3 b$ is equal to :

  • [JEE MAIN 2025]

Consider the following system of equations : $x+2 y-3 z=a$ ; $2 x+6 y-11 z=b$ ; $x-2 y+7 z=c$    where $a , b$ and $c$ are real constants. Then the system of equations :

  • [JEE MAIN 2021]