Consider the following system of equations : $x+2 y-3 z=a$ ; $2 x+6 y-11 z=b$ ; $x-2 y+7 z=c$ where $a , b$ and $c$ are real constants. Then the system of equations :
has a unique solution when $5 a =2 b + c$
has infinite number of solutions when $5 a =2 b + c$
has no solution for all $a , b$ and $c$
has a unique solution for all $a , b$ and $c$
If $a,b,c$ be positive and not all equal, then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right|$ is
If $a, b, c$ are non-zero real numbers and if the system of equations $(a - 1 )x = y + z,$ $(b - 1 )y = z + x ,$ $(c - 1 )z= x + y,$ has a non-trivial solution, then $ab + bc + ca$ equals
The value of $\left| {\,\begin{array}{*{20}{c}}{41}&{42}&{43}\\{44}&{45}&{46}\\{47}&{48}&{49}\end{array}\,} \right| = $
If the system of equations $2 x+3 y-z=5$ ; $x+\alpha y+3 z=-4$ ; $3 x-y+\beta z=7$ has infinitely many solutions, then $13 \alpha \beta$ is equal to