If complex numbers $z_1$, $z_2$ are such that $\left| {{z_1}} \right| = \sqrt 2 ,\left| {{z_2}} \right| = \sqrt 3$ and $\left| {{z_1} + {z_2}} \right| = \sqrt {5 - 2\sqrt 3 }$, then the value of $|Arg z_1 -Arg z_2|$ is
$\frac{{2\pi }}{3}$
$\frac{\pi }{3}$
$\frac{\pi }{4}$
$\frac{{3\pi }}{4}$
If $|z|\, = 1,(z \ne - 1)$and $z = x + iy,$then $\left( {\frac{{z - 1}}{{z + 1}}} \right)$ is
For $a \in C$, let $A =\{z \in C: \operatorname{Re}( a +\overline{ z }) > \operatorname{Im}(\bar{a}+z)\}$ and $B=\{z \in C: \operatorname{Re}(a+\bar{z}) < \operatorname{Im}(\bar{a}+z)\}$. Then among the two statements :
$(S 1)$ : If $\operatorname{Re}(A), \operatorname{Im}(A) > 0$, then the set $A$ contains all the real numbers
$(S2)$: If $\operatorname{Re}(A), \operatorname{Im}(A) < 0$, then the set $B$ contains all the real numbers,
Consider the following two statements :
Statement $I$ : For any two non-zero complex numbers $\mathrm{z}_1, \mathrm{z}_2$
$\left(\left|z_1\right|+\left|z_2\right|\right)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2\left(\left|z_1\right|+\left|z_2\right|\right)$ and
Statement $II$ : If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are three distinct complex numbers and a, b, c are three positive real numbers such that $\frac{a}{|y-z|}=\frac{b}{|z-x|}=\frac{c}{|x-y|}$, then
$\frac{\mathrm{a}^2}{\mathrm{y}-\mathrm{z}}+\frac{\mathrm{b}^2}{\mathrm{z}-\mathrm{x}}+\frac{\mathrm{c}^2}{\mathrm{x}-\mathrm{y}}=1$
Between the above two statements,
Let $S=\left\{z \in C : z^{2}+\bar{z}=0\right\}$. Then $\sum \limits_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$ is equal to$......$
The argument of the complex number $\frac{{13 - 5i}}{{4 - 9i}}$is