ધારો કે $A=\{(x, y): 2 x+3 y=23, x, y \in \mathbb{N}\}$ અને $B=\{x:(x, y) \in A\}$. તો $\mathrm{A}$ થી $\mathrm{B}$ તરફના એક-એક વિધેયોની સંખ્યા ............ છે.
$24$
$28$
$42$
$11$
જો $2{\sin ^2}x + 3\sin x - 2 > 0$ અને ${x^2} - x - 2 < 0$ ($x$ એ રેડિયનમાં છે) તો $x$ નો અંતરાલ મેળવો.
${\sin ^{ - 1}}\left[ {{{\log }_3}\left( {\frac{x}{3}} \right)} \right]$ નો પ્રદેશ મેળવો.
$'a'$ ની કઇ કિમત માટે અસમતા ${x^2} - (a + 2)x - (a + 3) < 0$ નુ ઓછામા ઓછુ એક વાસ્તવિક કિમત $x$ માટે સંતોષે છે.
વિધેય $f(x) = \frac{{{{\sin }^{ - 1}}(x - 3)}}{{\sqrt {9 - {x^2}} }}$ નો પ્રદેશ મેળવો.
જો $f(x)$ માટે $f\left( {\frac{{5x - 3y}}{2}} \right)\, = \,\frac{{5f(x) - 3f(y)}}{2}\,\forall x,y\in R$ $f(0) = 1, f '(0) = 2$ હોય તો $sin \ (f(x))$ નો આવર્તમાન મેળવો.